

Visual & Thermal comfort with Electrochromic glass

using a adaptive control strategy

Prof.Dr. Sabine Hoffmann Raghuram Kalyanam M.Sc. Dept. Built Environment University of Kaiserslautern Germany

Living Lab smart office space

We are a small team under Prof. Dr. Sabine Hoffmann working on

- Thermal comfort
- Visual comfort
- Context aware lighting
- Activity recognition
- Personal heating/cooling devices like climate chairs and movable partitions etc.

Architectural plan – Living Lab

Chair of **Built Environment**

Chair of **Built Environment**

View points – Living Lab

south view

north view

head height = 1.2 m

Challenges

- Visual discomfort
 - Direct glare from Sun
 - Exterior & interior Reflections
- Thermal Discomfort
 - Direct radiation on head
 - High indoor temperature(solar heat gains)
- Energy Consumption
 - Internal heat gains
 - Increase in cooling and heating Loads

Façade – Living Lab

Chair of **Built Environment**

Solution - Electrochromic Glass

Chair of **Built Environment**

Chair of **Built Environment**

3 Zones

Upper zone -1.10m

Middle zone-1.10m

Lower zone - 0.80m

Zoning

States

Tools

Simulation

SketchUp & Groundhog EnergyPlus Daysim & Radiance

Outputs

Heating/cooling loads
DGP profiles
Illumination Profiles
Ranked combination of states

Implementation

Illuminance sensors
Pyranometers
Raspberry Pi
HDR camera
Temperature sensors
EC glass

Outputs

Optimal state

Simulation parameters

- 3 Different sky conditions
- 3 Zones with each 4 states i.e. 64 (4x4x4) combination of states per time step
- 4 View points/ sitting positions

All together a combination of $3 \times 64 \times 4$ simulations for each time step over 365 days.

Running Simulations

- Convert Sketchup Model to Radiance Model using Groundhog
- Get the glass states from Optics
- Add the glass state to each zone as texture (Automate using a script)
- Define Sky condition, View Points and sensor locations for Daysim and Generate Annual Illuminance & DGP Profiles
- Generate Heating and Cooling loads using EnergyPlus
- Rank Combination of states per Sky Condition based on DGP, Illuminance Values & Heating/Cooling Loads

Implementation

Ranked combination of states for each time step, sky condition and viewpoint

Rank	States Combination	DGP	Illuminance (lux)	Sensible Heating Rate [W](Hourly)	Sensible Cooling Rate [W](Hourly)
1	8909-8909-8909	0.26	1500	0	2020.8
2	8909-8909-8906	0.34	2200	0	2349.6

•••••

64	8905-8905-8905	0.56	5021	0	6440.8

Determining sky condition

A.Fakra* et al. has given some valuable analysis

Sky Ratio $=d\downarrow h/G\downarrow h$ d_h is Diffuse horizontal terrestrial-irradiance (W/m²) G_h is Global horizontal terrestrial-irradiance (W/m²)

sky ratio	sky type	success rate
SR≥0.8	Overcast	81%
0.3 <sr 0.8<="" <="" td=""><td>Intermediate</td><td>60%</td></sr>	Intermediate	60%
$SR \leq 0.3$	Clear	98%

Chair of **Built Environment**

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Visual and thermal comfort feedback

- 1 Completely uncomfortable
- 2 Uncomfortable
- 3 Slightly uncomfortable
- 4 Comfortable
- 5 Very Comfortable

Conclusion

- To avoid discomfort glare electrochromic glazing can be used.
- Dividing the EC-window in different zones allows for an optimum control.
- Choosing the right states depending on the season and on sky condition, can reduce the heating and cooling load significantly.
- Machine learning techniques will be used in combination with user feedback when sky conditions are difficult to predict.

Chair of **Built Environment**

EC glass states

SageGlass Type	%T _{vis}	%T _{sol}	SHGC
Clear state	60	33	0.41
Intermediate state 2	18	7	0.15
Intermediate state 1	6	2	0.10
Fully Tinted	1	0.4	0.09

